52 research outputs found

    Chick PTPσ regulates the targeting of retinal axons within the optic tectum

    Get PDF
    Chick PTP (cPTP), also known as CRYP, is a receptor-like protein tyrosine phosphatase found on axons and growth cones. Putative ligands for cPTP are distributed within basement membranes and on glial end feet of the retina, optic nerve, and optic tectum, suggesting that cPTP signaling is occurring along the whole retinotectal pathway. We have shown previously that cPTP plays a role in supporting the retinal phase of axon outgrowth. Here we have now addressed the role of cPTP within retinal axons as they undergo growth and topographic targeting in the optic tectum. With the use of retroviruses, a secretable cPTP ectodomain was ectopically expressed in ovo in the developing chick optic tectum, with the aim of directly disrupting the function of endogenous cPTP. In ovo, the secreted ectodomains accumulated at tectal sites in which cPTP ligands are also specifically found, suggesting that they are binding to these endogenous ligands. Anterograde labeling of retinal axons entering these optic tecta revealed abnormal axonal phenotypes. These included the premature stalling and arborization of fibers,excessive pretectal arbor formation, and diffuse termination zones. Most of the defects were rostral of the predicted termination zone, indicating that cPTP function is necessary for sustaining the growth of retinal axons over the optic tectum and for directing axons to their correct sites of termination. This demonstrates that regulation of cPTP signaling in retinal axons is required for their topographic mapping, the first evidence of this function for a receptor-like protein tyrosine phosphatase in the retinotectal projection

    Synthetic prions with novel strain-specified properties

    Get PDF
    Prions are infectious proteins that possess multiple self-propagating structures. The information for strains and structural specific barriers appears to be contained exclusively in the folding of the pathological isoform, PrP(Sc). Many recent studies determined that de novo prion strains could be generated in vitro from the structural conversion of recombinant (rec) prion protein (PrP) into amyloidal structures. Our aim was to elucidate the conformational diversity of pathological recPrP amyloids and their biological activities, as well as to gain novel insights in characterizing molecular events involved in mammalian prion conversion and propagation. To this end we generated infectious materials that possess different conformational structures. Our methodology for the prion conversion of recPrP required only purified rec full-length mouse (Mo) PrP and common chemicals. Neither infected brain extracts nor amplified PrP(Sc) were used. Following two different in vitro protocols recMoPrP converted to amyloid fibrils without any seeding factor. Mouse hypothalamic GT1 and neuroblastoma N2a cell lines were infected with these amyloid preparations as fast screening methodology to characterize the infectious materials. Remarkably, a large number of amyloid preparations were able to induce the conformational change of endogenous PrPC to harbor several distinctive proteinase-resistant PrP forms. One such preparation was characterized in vivo habouring a synthetic prion with novel strain specified neuropathological and biochemical properties

    Prion Seeding Activities of Mouse Scrapie Strains with Divergent PrPSc Protease Sensitivities and Amyloid Plaque Content Using RT-QuIC and eQuIC

    Get PDF
    Different transmissible spongiform encephalopathy (TSE)-associated forms of prion protein (e.g. PrPSc) can vary markedly in ultrastructure and biochemical characteristics, but each is propagated in the host. PrPSc propagation involves conversion from its normal isoform, PrPC, by a seeded or templated polymerization mechanism. Such a mechanism is also the basis of the RT-QuIC and eQuIC prion assays which use recombinant PrP (rPrPSen) as a substrate. These ultrasensitive detection assays have been developed for TSE prions of several host species and sample tissues, but not for murine models which are central to TSE pathogenesis research. Here we have adapted RT-QuIC and eQuIC to various murine prions and evaluated how seeding activity depends on glycophosphatidylinositol (GPI) anchoring and the abundance of amyloid plaques and protease-resistant PrPSc (PrPRes). Scrapie brain dilutions up to 10-8 and 10-13 were detected by RT-QuIC and eQuIC, respectively. Comparisons of scrapie-affected wild-type mice and transgenic mice expressing GPI anchorless PrP showed that, although similar concentrations of seeding activity accumulated in brain, the heavily amyloid-laden anchorless mouse tissue seeded more rapid reactions. Next we compared seeding activities in the brains of mice with similar infectivity titers, but widely divergent PrPRes levels. For this purpose we compared the 263K and 139A scrapie strains in transgenic mice expressing P101L PrPC. Although the brains of 263K-affected mice had no immunoblot-detectable PrPRes, RT-QuIC indicated that seeding activity was comparable to that associated with a high-PrPRes strain, 139A. Thus, in this comparison, RT-QuIC seeding activity correlated more closely with infectivity than with PrPRes levels. We also found that eQuIC, which incorporates a PrPSc immunoprecipitation step, detected seeding activity in plasma from wild-type and anchorless PrP transgenic mice inoculated with 22L, 79A and/or RML scrapie strains. Overall, we conclude that these new mouse-adapted prion seeding assays detect diverse types of PrPSc

    Chick PTPsigma regulates the targeting of retinal axons within the optic tectum.

    No full text
    Chick PTPsigma (cPTPsigma), also known as CRYPalpha, is a receptor-like protein tyrosine phosphatase found on axons and growth cones. Putative ligands for cPTPsigma are distributed within basement membranes and on glial end feet of the retina, optic nerve, and optic tectum, suggesting that cPTPsigma signaling is occurring along the whole retinotectal pathway. We have shown previously that cPTPsigma plays a role in supporting the retinal phase of axon outgrowth. Here we have now addressed the role of cPTPsigma within retinal axons as they undergo growth and topographic targeting in the optic tectum. With the use of retroviruses, a secretable cPTPsigma ectodomain was ectopically expressed in ovo in the developing chick optic tectum, with the aim of directly disrupting the function of endogenous cPTPsigma. In ovo, the secreted ectodomains accumulated at tectal sites in which cPTPsigma ligands are also specifically found, suggesting that they are binding to these endogenous ligands. Anterograde labeling of retinal axons entering these optic tecta revealed abnormal axonal phenotypes. These included the premature stalling and arborization of fibers, excessive pretectal arbor formation, and diffuse termination zones. Most of the defects were rostral of the predicted termination zone, indicating that cPTPsigma function is necessary for sustaining the growth of retinal axons over the optic tectum and for directing axons to their correct sites of termination. This demonstrates that regulation of cPTPsigma signaling in retinal axons is required for their topographic mapping, the first evidence of this function for a receptor-like protein tyrosine phosphatase in the retinotectal projection

    Isoform-specific binding of the tyrosine phosphatase PTPsigma to a ligand in developing muscle.

    No full text
    PTPsigma is a receptor tyrosine phosphatase that is expressed widely in the developing nervous system and that controls the growth and retinotopic mapping of retinal axons. PTPsigma is also expressed in motor neurons where its function is unclear. Given that invertebrate relatives of PTPsigma can control motor axon guidance, target contact, and synaptogenesis, we have asked if extracellular ligands exist for cPTPsigma, the avian PTPsigma orthologue, in the neuromuscular system. Of the two major isoforms cPTPsigma1 and cPTPsigma2, only the shorter cPTPsigma1 isoform is expressed in developing spinal motor neurons and their axons. We show that ectodomains of cPTPsigma1, but not of cPTPsigma2, bind specifically to developing skeletal myotubes. The putative myotube ligand is not related to the previously described binding of cPTPsigma to heparan sulfates within the proteoglycans agrin and collagen XVIII, since heparinase treatment of myotubes does not alter cPTPsigma1 binding and since most mutations that abolish binding of cPTPsigma1 to heparin do not affect myotube binding. The expression of cPTPsigma1 in motor axons and its direct binding to target myotubes suggest an isoform-specific role for axonally expressed cPTPsigma1 during establishment or maintenance of neuromuscular contacts

    PTPsigma promotes retinal neurite outgrowth non-cell-autonomously.

    No full text
    The receptor-like protein tyrosine phosphatase (RPTP) PTPsigma controls the growth and targeting of retinal axons, both in culture and in ovo. Although the principal actions of PTPsigma have been thought to be cell-autonomous, the possibility that RPTPs related to PTPsigma also have non-cell-autonomous signaling functions during axon development has also been supported genetically. Here we report that a cell culture substrate made from purified PTPsigma ectodomains supports retinal neurite outgrowth in cell culture. We show that a receptor for PTPsigma must exist on retinal axons and that binding of PTPsigma to this receptor does not require the known, heparin binding properties of PTPsigma. The neurite-promoting potential of PTPsigma ectodomains requires a basic amino acid domain, previously demonstrated in vitro as being necessary for ligand binding by PTPsigma. Furthermore, we demonstrate that heparin and oligosaccharide derivatives as short as 8mers, can specifically block neurite outgrowth on the PTPsigma substrate, by competing for binding to this same domain. This is the first direct evidence of a non-cell-autonomous, neurite-promoting function of PTPsigma and of a potential role for heparin-related oligosaccharides in modulating neurite promotion by an RPTP

    Insolubility of disrupted-in-schizophrenia 1 disrupts oligomer-dependent interactions with nuclear distribution element 1 and is associated with sporadic mental disease

    No full text
    Disrupted-in-schizophrenia 1 (DISC1) and other genes have been identified recently as potential molecular players in chronic psychiatric diseases such as affective disorders and schizophrenia. A molecular mechanism of how these genes may be linked to the majority of sporadic cases of these diseases remains unclear. The chronic nature and irreversibility of clinical symptoms in a subgroup of these diseases prompted us to investigate whether proteins corresponding to candidate genes displayed subtle features of protein aggregation. Here, we show that in postmortem brain samples of a distinct group of patients with phenotypes of affective disorders or schizophrenia, but not healthy controls, significant fractions of DISC1 could be identified as cold Sarkosyl-insoluble protein aggregates. A loss-of-function phenotype could be demonstrated for insoluble DISC1 through abolished binding to a key DISC1 ligand, nuclear distribution element 1 (NDEL1): in human neuroblastoma cells, DISC1 formed expression-dependent, detergent-resistant aggregates that failed to interact with endogenous NDEL1. Recombinant (r) NDEL1 expressed in Escherichia coli selectively bound an octamer of an rDISC1 fragment but not dimers or high molecular weight multimers, suggesting an oligomerization optimum for molecular interactions of DISC1 with NDEL1. For DISC1-related sporadic psychiatric disease, we propose a mechanism whereby impaired cellular control over self-association of DISC1 leads to excessive multimerization and subsequent formation of detergent-resistant aggregates, culminating in loss of ligand binding, here exemplified by NDEL1. We conclude that the absence of oligomer-dependent ligand interactions of DISC1 can be associated with sporadic mental disease of mixed phenotypes

    Chick PTPσ Regulates the Targeting of Retinal Axons within the Optic Tectum

    No full text
    Chick PTPσ (cPTPσ), also known as CRYPα, is a receptor-like protein tyrosine phosphatase found on axons and growth cones. Putative ligands for cPTPσ are distributed within basement membranes and on glial end feet of the retina, optic nerve, and optic tectum, suggesting that cPTPσ signaling is occurring along the whole retinotectal pathway. We have shown previously that cPTPσ plays a role in supporting the retinal phase of axon outgrowth. Here we have now addressed the role of cPTPσ within retinal axons as they undergo growth and topographic targeting in the optic tectum. With the use of retroviruses, a secretable cPTPσ ectodomain was ectopically expressed in ovo in the developing chick optic tectum, with the aim of directly disrupting the function of endogenous cPTPσ. In ovo, the secreted ectodomains accumulated at tectal sites in which cPTPσ ligands are also specifically found, suggesting that they are binding to these endogenous ligands. Anterograde labeling of retinal axons entering these optic tecta revealed abnormal axonal phenotypes. These included the premature stalling and arborization of fibers, excessive pretectal arbor formation, and diffuse termination zones. Most of the defects were rostral of the predicted termination zone, indicating tha

    Metagenomic data of DNA viruses of poultry affected with respiratory tract infection

    No full text
    The incidence and severity of respiratory diseases in commercial broiler chicken flocks have increased recently in India because of intensification of the broiler industry. Viral population are predominant in respiratory tract infections and they pose continuous economic burden to poultry industry by causing severe economic losses through decreased productivity [1, 2]. To understand viral metagenome of poultry associated with respiratory infections, we performed DNA virome sequencing and data analysis of broilers from 8 districts of Gujarat State in India. We report high quality sequencing reads and highly abundant DNA viral population present in the infected broiler birds. The raw sequencing data used to perform metagenomic analysis is available in the Sequence Read Archive (SRA) under the BioProject No. PRJNA322592 and Accession No. MAUZ00000000, MAVA00000000, MAVB00000000, MAVC00000000, MAVD00000000, MAVE00000000, MAVF00000000, MAVG00000000 (https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA322592). Keywords: DNA Virome, Metagenomics, Next generation sequencin
    corecore